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Thermal Limits of Overhead Transmission Lines
1 Line rating: maximal allowable currents on a transmission line

2 Actual rating heavily depends on ambient temperature, solar radiation, and
wind speed.

I Example (The Valley Group 11’): 20 mile transmission line (795 ACSR)
I Ambient temperature ↓ 10 ◦C⇒ ↑ 11% capacity
I Wind speed (90 ◦ ) ↑ 1m/sec⇒ ↑ 44% capacity

3 Static line rating

I Protect against annealing, reliability, and security risk; manufacturing error
I However, very conservative
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Dynamic Line Rating

I Dynamic Line Rating (DLR):

I Monitor real-time ambient environment (e.g., temperature, wind speed, line
tension)

I Forecast real-time transmission capacity

I Benefits by DLR

I Reduce operator intervention and increase grid reliability
I Help wind integration and reduce curtailment
I Relieve Contingency, improve economical dispatch
I ......

I Focus of this study

I Study overloading risks caused by DLR forecast errors
I Incorporate overloading risk control in DLR applications

I Inspired by the Valley Group presentation at FERC technical conference in 2013
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An Application of DLR on Economic Dispatch

I Economic dispatch with DLR options

I Forecasted line rating: α` (percentage) extra capacity on line `

I Decision x`: whether to use the extra capacity α` on line `

ED with DLR Formulation

min
∑
g∈G

∑
t∈T

cg(pg,t) +
∑
n∈N

∑
t∈T

hn,tqn,t

s.t. G(pg,t, p`,t, qn,t) ≥ 0
− SLR` · (1 + α`,tx`,t) ≤ p`,t ≤ SLR` · (1 + α`,tx`,t) ∀` ∈ L ∀t ∈ T

I pg,t power generation; hn,t load shedding at bus n
I G: all constraints in a regular economic dispatch formulation
I SLR: static line rating
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Forecast Errors

I Forecasting:

I A value/interval with a probability: at least α` extra capacity with a probability p`
I Forecast errors are inherent

I Consequences of forecast errors

I Security issues
I Cost incurred by redispatching

I Overloading risk on a single line

I Kim & Dobson 2011, Zhang, Pu, et al. 2002, Wan, McCalley, and Vittal 1999,
etc.

I Overloading risk on multiple lines

I Forecast errors are correlated, e.g., local weather changes
I Redispatching/rerouting power becomes significantly more difficult
I Current N-1 contingency does not capture multiple-line trips
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Forecast Errors

I Model forecast errors

I b̃`: Bernoulli random number, whether line ` has α extra capacity
I b̃` = 1: forecast is correct

I Outcome table

I when b̃` = 0; x` = 1, potential overloading risk
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A Risk Measure for Overloading on Multiple Lines
Definition
The probability that more than k lines are at an overloading risk

I k: parameter chosen based on system configuration, operator experience, etc.

Risk Requirement

P (more than k lines are at an overloading risk) ≤ ε.

⇓

P

(∑
`∈L

(1− b̃`,t)x`,t ≥ k + 1

)
≤ ε.

I ε ∈ (0, 1): operator’s tolerance on the risk level

I Can be very general for modeling decisions with forecast errors
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Ambiguity When Information is Incomplete

I Challenges in evaluating the risk:

I Incomplete information. Only joint distributions up to level m are known, e.g.,
marginal and pair-wise joint distributions (m = 2)

I Complete distribution data is of exponential size

I Ambiguity occurs when information is incomplete

I Distribution function CANNOT be uniquely determined
I A single distribution ξ V.S. a family of distributions P
I Which one to use to evaluate the probability? It is ambiguous

I To clarify the ambiguity: a worst-case point of view

Distributionally Robust Model

X := {x ∈ {0, 1}L : sup
ξ∈P

(
Pξ(
∑
`∈L

(1− b̃`)x` ≥ k + 1)

)
≤ ε}
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Economic Dispatch with DLR
I Dispatch in the look-ahead model with DLR

I Multi-period economic dispatch
I Dynamic line rating forecasts for line capacities

I Use only those DLR forecast such that

I Generation and load shedding costs are reduced most effectively
I Overloading risk requirement is satisfied

I The mathematical model

min
∑
g∈G

∑
t∈T

cg(pg,t) +
∑
n∈N

∑
t∈T

hn,tqn,t

s.t. G(pg,t, p`,t, qn,t) ≥ 0
− SLR` · (1 + α`,tx`,t) ≤ p`,t ≤ SLR` · (1 + α`,tx`,t) ∀` ∈ L ∀t ∈ T[

sup
ξ∈P

(
Pξ(
∑
`∈L

(1− b̃`,t)x`,t ≥ k + 1)

)
≤ ε

]
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An Inner Approximation

I Identifying the worst case distribution requires exponential-size data

I The Boolean problem: exponential size

I Construction of an inner approximation of X

I Let U(x) ≥ F(x) := supξ∈P
(
Pξ(
∑

`∈L(1− b̃`)x` ≥ k + 1)
)

for any x of
interest

Inner Approximation
Let X̄ := {x ∈ {0, 1}L : U(x) ≤ ε}, then

X̄ ⊆ X

I U(x) has to be computable
I U(x) should be as tight as possible
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Linear Programming (LP)-Based Probability Bounds

I (1− b̃`)x` can be treated as a Bernoulli random number parameterized by x`

I F(x): the probability that at least k + 1 events occur

I P( (1− b̃`)x` = 1 ) = (1− p`)x`
I P( (1− b̃`1 )x`1 = 1, (1− b̃`1 )x`1 = 1 ) = p̄`1,`2 x`1 x`2

Proposition (Prékopa, 1990. A LP-Based Probability Bound)

U(x) = max{
|L|∑

j=k+1

vj :

|L|∑
j=i

(
j
i

)
vj = si(x) i = 0...m}

I s0(x) = 1, si(x) =
∑

C⊆L:|C|=i pC
∏

j∈C xj, and
( j

0

)
= 1; vi ≥ 0

I A disaggregated LP provides better bounds [Prékopa & Gao, 2005]

I The bounds above can be significantly improved by adding a set of linear
inequalities [Qiu, Ahmed, & Dey, 2013]
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Proposition (Prékopa, 1990. A LP-Based Probability Bound)

U(x) = max{
|L|∑

j=k+1

vj :

|L|∑
j=i

(
j
i

)
vj = si(x) i = 0...m}

I s0(x) = 1, si(x) =
∑

C⊆L:|C|=i pC
∏

j∈C xj, and
( j

0

)
= 1; vi ≥ 0

I A disaggregated LP provides better bounds [Prékopa & Gao, 2005]
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I The bounds above can be significantly improved by adding a set of linear
inequalities [Qiu, Ahmed, & Dey, 2013]

12 / 18



Linearization
I Step 1:

X̄ = {x ∈ {0, 1}|L| : max{e>v : T>v = S(x)} ≤ ε}

⇓
X̄ = {x ∈ {0, 1}|L| : min{π>S(x) : π>T ≥ e>k } ≤ ε}

⇓
X̄ = {x ∈ {0, 1}|L| : ∃π ∈ Rm+1 : π>S(x) ≤ ε, π>T ≥ e>k }

I Step 2:

I Nonlinear terms yC := πi
∏

j∈C xj

I McCormick linearization technique:

yC ≤ M+xj ∀j ∈ C,
yC ≥ −M−xj ∀j ∈ C,
yC ≤ πt + M+(|C| −

∑
j∈C xj)

yC ≥ πt −M−(|C| −
∑

j∈C xj),

I M can be properly bounded [Qiu, 2013]
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Mixed-Integer Linear Program Formulation

I MILP Formulation

min
∑
g∈G

∑
t∈T

cg(pg,t) +
∑
n∈N

∑
t∈T

hn,tqn,t

s.t. G(pg,t, p`,t, qn,t) ≥ 0
− SLR` · (1 + α`,tx`,t) ≤ p`,t ≤ SLR` · (1 + α`,tx`,t) ∀` ∈ L ∀t ∈ T

π0 +
∑

C⊆L:|C|≤m

pCyC ≤ ε

π0 +

m∑
t=i

(
i
t

)
πt ≤ ei

k i = 1, ...n

−M−xj ≤ yC ≤ M+xj ∀j ∈ C,∀C ⊆ L : |C| ≤ m

πt −M−(|C| −
∑
j∈C

xj) ≤ yC ≥ −M−xj ∀j ∈ C,∀C ⊆ L : |C| ≤ m
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A Case Study – Dispatch Cost Reduction

I Experiment settings

I IEEE 73 (RTS 96)-bus system
I High loads, insufficient generation
I 4-time-period economic dispatch
I m = 2, i.e., only marginal and pair-wise joint distributions are available
I k = 3, evaluating the overloading risk on 3 or more lines
I Two sets of rating forecast data:

I lower ratings (15% over static rating) with higher confidence levels
I higher ratings (30% over static rating) but with lower confidence levels
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Case Study – Dispatch Cost Reduction
Table: Comparison of Load Shedding Reduction

Threshold (α) ε L.S. Reduction Avg. # of Lines Used k-Overloading Risk∗

0.15 0.01 67% 5.25 0.007
0.05 69% 6.25 0.016

0.30 0.01 68% 3.25 0.009
0.05 80% 5.00 0.030

k-Overloading Risk: an upper bound on the actual overloading risk

I Observations:

I Comparing with no risk control (α=0.15): L.S. Reduction = 100%, Avg. # of
lines=12, but 3-overloading risk = 0.08

I Overloading risk under control; load shedding cost reduced
I More risks, more gains
I For the same risk level requirement, the lower rating data set has a larger set of

lines to utilize the extra capacity predicted by DLR than the higher rating data set
I Similar patterns observed in thermal generation cost reduction during normal

operation conditions.
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Conclusions and Future Research

I Conclusions

I Risk measure for overloading risk on multiple lines caused by DLR forecast
errors

I Distributionally robust economic dispatch model with DLR
I Mixed-integer program formulation

I Future research

I Develop more compact MILP formulations; efficient algorithms
I Other perspectives on overloading risk
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Thank you!

Comments?
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